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is closely associated with the existence of a certain special calss of so-called polyno- 

mial kernels 1131. In [4, 6, 14, 1.51 particular cases of such kernels were constructed in 

various ways. Here we indicate a method of constructing polynomial kernels, on the 

basis of which not only all the previously constructed kernels may be obtained, but more 
general ones as well. 

1, The eraentiol feature8 of the method of orthogonal polyno- 
mial8. It is known that spatial contact problems with no friction force may be reduced 
to a two-dimensional integral equation oftile first kind. To this equation must be adjoined 

a differential equation as well, if a plate rather than a stamp is being contacted. For 
contact regions such as a half-plane, strip, disk, or annulus, by means of some integral 
transformation or another, one may reduce the indicated two-dimensional system of equa- 
tions to a one-dimensional problem. In the case of a stamp we thus have only a single one- 

dimensional integral equation of the first kind. In the case of a plate, however, we obtain 
a system composed of the equation indicated together with an ordinary differential equa- 
tion. This last can likewise be reduced to an integral equation of the first kind by use 

of the Green’s function for the differential equation obtained. One may get an idea of 

how this is done by looking at the example of a plane contact problem in [1s]. 
Thus, spatial contact problems for the regions enumerated, and also plane problems 

with one contacting segment (sometimes two) may be reduced to solving an integral 
equation of the first kind ,, 

5 K (5, Y) CP (Y! dy.=- I (2) (a d 2 < b) (1.i) 
a 

given on either a finite or a semi-infinite interval. 
Such problems, but with account taken of the surface structure of the contacting bodies, 

were, in the formulation of Shtaerman [lS], reduced to analogous integral equations of 
the second kind 
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cp (x) + h 1 K (x, Y) cp (Y) dy.= f (4 (a d x < b) W) 
a 

In order to describe the essentials of the method of orthogonal polynomials as applica- 
ble to Eqs. (1.1) and (1.2). we introduce a special class of kernels according to the fol- 
lowing definition. The function Il ( z, y) will be called a polynomial kernel, or in short 
a II-kernel, on the interval (a, b) if the following relations hold: 

b 

s 
II, (2, y) pk (y) S-C,*(~) ciy = O,Q_ (x) nnT (4 (a \< z 6 h 5n # 0; n = 0, 11 29.A 

(1 
II+ (5, Y) = l-Us, Y)t II+ (2, Y) = II (YI 2) (1.3) 

Here nf (I) is a polynomial of degree exactly n, i.e. the coefficients of the highest 
powers k,* # 0, for definiteness we shall suppose that Re k,f> 0. The polynomials indi- 
cated are orthogonal in the sense that 

b 

s 
a&* (3 n,f (3 .w* (2) dX = 6mn 9 Wf (4 = P-& (4 gr (3 (1.4) 

(1 

In this relation the weight functions may be complex. In the following relation (1.3) 
will for convenience be called the spectral relation ( l ). 

If the weight function ZU* (2) is nonnegative and the condition 

bb 

P+(Y) 
n2(xv y) g_(y) dzdy< O” 

is fulfilled, then the lI -kernel will be said to be of Hilbert-type. 
We introduce the kernel 

(1.5) 

and the orthonormal system of functions b 

cPn* (5) = v/w@-tn* (x), 
s ‘p,* (2) cpm* (a9 dx = 6,, (1.7) 
a 

Then (1.3) may be written in the form 
b b 

s 
H (2, Y) cpn* (Y) dy = $,,cpnT (x), 

s H (Y, 2) ‘p,+ (Y) dy = OJTJ,* (x) (1.8) 
a a 

Now, it is seen that (1.5) is equivalent to the condition that H (5, y) belong to the 
space &so from (1.8) according to the theory of Schmidt (see e.g. [17]), the kernel 
H (5, Y) may be expanded in a bilinear series, involving the orthogonal functions e,’ (x), 
and this series will converge in the mean. This means that the following bilinear expan- 
sion is always valid for Hilbert kernels: 

II (51 Y) = 6+ (t) g- (Y) i Q&-(x) n,+ (y) (1.3) 
n=o 

Suppose now it is required to construct a solution of the integral equation of the first 
kind 

*) This relation will actually determine the discrete spectrum of the integral operator 
with kernel II (x, Y), multiplied by some weight function, if Il (x, Y) = II (Y, 3). 
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b 

s I-I (~2 Y) cp (Y) dy = f (4 (a < 2 d b) 
a 

Expanding the right side in a series 

f (3 = B+ (2) 5 fn%-- (2). fn =~zJ-(“)%-(.)i(~)d~ 
?I==0 a 

and considering (1.3), we find formally a, 

(1.10) 

This will be also a solution in the strict sense (convergence understood in the sense 
of weighted mean convergence) of Eq. (1. lo), if II (2, y) is a Hilbert kernel, and, more- 

over, the series constructed from the numbers 1 j,,ui’l a, n = 0, 1, 2... converges. If the 
equation is given over a finite interval. then by virtue of the completeness in t, of the 

system of polynomials [lS], the constructed solution will be also unique [17] in L,. In 
the case of a semi-infinite interval this will be true in the case of weight functions 

which guarantee the completeness of the corresponding n-polynomials [18]. 
To solve the integral equation b 

cP(z)+h \ I-I(z, y)p(y) cP(?/)dy= f (2) 
: 

(1.12) 

with Hilbert II-kernel one uses the bilinear expansion (1.9). As a result the solution is 

found in the form 
cp (2) = I (z) + hq+ (x) 5 %m(Pm~- (x) 

b m=o 
. 

t, s 
g- (Y) %n+ (Y) P (Y) cp (Y) dy ’ 

(1.13) 
(pm = 

a ) 

In this the coefficients q,,, are found from the following infinite system of algebraic 

equations : 
(Pn + A i %?l~n?ncpm = fn (n=O, 1, 2,. . .) (1.14) 

m=o 
b b 

anm = 
s 

g+ (2) g-i(z) P (2) %+ (2) am- (2) dx, !n = s R_ (4 “I,+ (4 P (4 f (4 dx (1.15) 
0 

obtained from (1.13) by multiplying it by z,+ (z)g_(x)i (x) and integrating the result 

with respect to t from a to b . The solution constructed formally may be substantiated 
by drawing on Hilbert space methods. 

We shall consider the interval to be finite and set 
h - I%+(x)l<A (n=O, i, 2,. . .), SI @pz(x)g_2(x)Idx=J.<oJ (1.16) 

P- (4 
a 

Then the infinite system will be completely regular, if 

kABJ<l --e (Be = i I 0, Iz) (1.17) 
n-0 

The number B < CC by virtue of the Hilbert-like nature of the kernel [17]. This 
result follows from the estimate 
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co b 

(2 1115mll %m 12<~fjl ) %m I2 = B2 S I h tx) %a+ tx) 12dx 
m=o m=o a 

The latter equation follows from the representation 

(1.18) 

b 

a nm = s I2 (2) %I+ (3 (Pm- (2) , 
a 

obtained from (1.15) by going over to orthogonal functions (1.7). Precisely from this 
representation it is clear that a,, are Fourier coefficients of the function h (&,+ (5) 
which (by virtue of the second of conditions (1.16)) belongs to the space L, (a, b). Finally, 

an estimate of the integral in (1.18) with use of both conditions (1.16) leads to (1.17). 
The coefficients &, (n = 0,1,2) will be bounded in number, if 

1/ 4_ (d lP+ (41~“’ f (4P (4 E ~5, (a, b), 
since they will represent Fourier coefficients of the indicated function in the system 
en+ (z). Of course in specific cases one may find more refined regularity conditions[4]. 
We note that the method of orthogonal polynomials is also useful in seeking [19] the 
spectrum of Eq. (1.12). 

One deals with integral equations of the type (1.10) in contact problems [4, 7. 91 for 
an elastic half-space (homogeneous or with modulus of elasticity variable according to 
a power law). These same problems, but with account taken of the surface structure of 
the contacting bodies, lead to equations of the type (1.12). 

The application of the method of orthogonal polynomials to the general case (1. I) 

consists in the following. One splits offa II-kernel from the kernel of Eq. (1. l), i. e. 

K (~9 Y) = II (2, Y) + D (5, Y) (1.19) 

and the solution is constructed in the form of a series o3 

Cp (x) = P+ t2) 2 TmGn+ tx) (1.20) 
m=o 

To seek the coefficients q,we must substitute (1.19) and (1.20) into (1.1). After use 

of the spectral relation (1.3). one multiplies both sides by p-(s)rctn- (5) and integrates 
from a to b . As a result we obtain an infinite system of equations 

5,~ + ,?J GmcPm = f n (n = O,l, 2, . 1 .) (1.21) 

bb 
m=0 

b 

d %- (5) “I,+ (Y) D @, Y) dxdY, 

[P- (4 PC (Y)l_’ 
fn = P- (4 “I,- (4 f (4 dx 

lla a 
The justification of this formal procedure follows from Hilbert space methods which 

must be applied here. The condition of regularity of the system (1.21) in both cases is 
obtained with difficulty. However, for a sufficiently wide class of kernels, embracing a 
large class of contact problems, one may prove its quasi-complete regularity [ll]. How 
to obtain a representation (1.19) in practice is shown in c2- 5, 7, 8, 111. In applications 
to contact problems it proves always to be the case that the II-kernel carries the singu- 

larity of the kernel of the equation, and the function D (x, y) in the worst case turns out 
to be continuous. and even differentiable any number of times. 

It may easily be seen that the coefficients dnm determine a representation of the func- 

tion D (5, I/) in the form of a double series in the n,*-polynomials. If one retains a 
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finite number of terms in this series, one comes up with the following approximation: 
N ?i 

D (x9 Y) = g+ (3 g- (Y) 2 2 dm%- (x) %n+ (Y) (1.22) 
m=o n=o 

Then, clearly, to find approximate values for (pm (m = O,i,..,N), we have the follow- 
ing system of equations : N 

%%I + 2 c4wncprn = fn (n=O, 1, 2,. . ., N) (1.23) 

m=o 
and for the remaining a, (m = N + 1, N + 2,...) , the formula g,,, = f,,&-1. Now, if 
the function f (2) / g+ (z) is a polynomial oi degree M, which is fairly often the case 

in contact problems [2, 31, the series (1.20) terminates at the term with index equal to 

max (N, M). 
The approximation (1.22) does not always prove to be convenient. In these cases it 

may prove useful to approximate the function D / g+g- by interpolation polynomials, 
as is done in [12]. Moreover, in many contact problems [3, 41 an approximation of the 

following sort occurs naturally : N 

D (x, Y) = g+ (x) g- (Y) 2 AkPk (“9 Y)v pk (x. y) = 
i akjxk-iyi 

k=o j=O 

In this case system (1.23) transforms into 
N--n 

wi’n + 2 hdi’m = f n (n=O, i, 2,. . ., N) (1.24) 
m=o 

Thus such an approximation has the advantage over the first two, that the matrix of 
coefficients of the system of algebraic equations is almost triangular. 

We note papers [6. 10-J. where the method of orthogonal polynomials is applied to the 
solution of (1.1) given on a finite interval, and at the same time the kernel of the equa- 
tion is a II-kernel on a semi-infinite interval. 

From the above it is clear how important the question of the construction of the II-ker- 
nel is. The following is concerned entirely with this question. 

2. One ruxilfrry theorem on II-ksrnel8. We concern ourselves here 
with the proof of the following assertion. 

The ore m 2.1. For the function II (5, y) to be a II-kernel (on the interval (a, b)), 

it is necessary and sufficient for the following conditions to be satisfied : 
a) there exist functions p+(z), g*(z) such that - 
b 

1 “k(r, Y) p+ (Y) ymdY - g+ (x) 5 b&x? b,,$#O (m=O, 1, 2,. ..) (2.1) 
j=o 

b) the following equation holds : 

b b 

1 +L (3 dz [II (G Y) P+ (Y) y*dy = i P+ (Y) ymdy 1 r~ (x3 Y) P- (x) xndx (2.2) 
” 

a a a a 

c) there exist moments 
b 

c** = s w+ (cc) x”dx (n=O, 1, 2,...) (W* (2) = P+ (x) gqz (4) (2.3) 

d) the following determinants do not vanish : 
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co * Cl%, . . ., C*f 

D,,*= cl-+ Ca*,. . ., cn+$ #I) (n = 0, 1.2, . . .) (2.5) 

%I f + cn+l.. . .t %n 
f 

We prove first the necessity of these conditions. Since a*n (z) is of degree n exactly, 

then ( [183, p. 17) 
L,+#O (2.5) 

Consequently, on the basis of (1.3) we may write 
b 72 

(2.6) 

From this follows the necessity of condition (a), in which 

I+,,,* = h,,*k,%, # 0 (n= 0. 1, 2,. . .) (2.7) 

In order to see the necessity of(b), one must write the iterated integrals in (2.2) by 

use of (2.6) and (2.5). The necessity of the remaining conditions arises from the follow- 
ing lemma. 

Lemma. If for some linear functional and some system of polynomials JC, (2) = 
= k,,zn + . . . . k,, # 0 (n = 0, 1, 2 ,...) we have the relation 

F (aj (z)nk (d) = 61, (2.8) 

then there exist numbers (moments) F{x* x0) = c,, for which 

D, = detllcj+~llon # 0 (n = 0, 1, 2,...) 

In fact, by virtue of (2. 8), (2.5) and the linearity of the functional, we have 

Fj2”~“)=F{~]=F{~~~~j’j(X)}=~=C~ 

On the other hand 

Cj+r = F {dz”) = F { i hj,JC, (2) i h#s~~t, (ET)} = “In! ‘) hj&kp 

-0 s=ml r=o 
If we now introduce the triangular matrix 

(2.9) 

I.04 0 o...o 
hl0 1110 . . . 0 

h= . . . . . , . . . ’ 
det An = fi djj #0 

%I, &L, - . * hl 
i-0 

and its transpose An’, det A,’ = det A,, then the equation (2.9) obtained means nothing 

other than llcjtrllon = A,, Ar,’ and therefore 

det IlCj+kllo" = detA,, datA,’ # 0 

We pass to the proof of the sufficiency of the conditions of Theorem 2.1. For this we 
multiply both sides of the first ofrelations (2.1) by +(s)x” (n = 0, 1, 2,...) and inte- 
grate with respect to x from a to 6 , after which on the left side we represent the inte- 
gral on the basis of (2.2). As a result of using the second relation from (2.1) and the 
notation (2.3) we obtain 

ibjn-c,$ = 2 bjm+cn+j (2.10) 
j-o 
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Furthermore, using condition (d), we construct ( [18], p. 416) two families of polyno- 
mials 

n,*(z) = i 
)/ D,fO~-fi 

satisfying condition (1.4). 

:rJf a$, * . c -+ n 

:,* c,k - . . Cnfl * 

. , . . . . . . . . 

4 -I 
f&-l--cn . - - 

-+ 
Can-1 

i x . . . xn 

9 k,,* = (2.11) 

Denoting the cofactors of the terms in the last row of the determinant in (2.11) by 
Ajn*(i = 0,1,2 ,..., n), we may write 

Jr%* (2) = (2.12) 

Using the last formula, and also the first relation of (2. l), we calculate the integral 
h \ 

(2.13) 

It now remains to be shown that the polynomial (2.13) differs by only a constant from 

n,- (x) determined by formula (2.11) or (2. U), i. e, p,- (z) = a,~,- (I), IS,- # 9. 
As is known [18f, for this it suffices to show that 

b 

J,= P,,‘(x)xmw_(x)dx=O (m=O, i, 2,..., n-i) 
s 
a 

Substituting expression (2.13) into the left of the latter equation and taking (2.10) 
into consideration, we obtain 

The last equation is valid since the Ajn+ are the cofactors of the entries in the last 

row of the determinant in (2.11). Finally, equating the coefficients of Z~ in the poly- 

nomials P,- (2) and n,- (z), we find a,- = b,,+k,+[kn-l-l # 0, since b,,+, k,+ # 0. 
Thus it is proved that b 

1 II (2, Y) P+ (Y) %+ (Y) dy = %-,a+ (x) 3tn.P) . (2.14) 
a 

In an analogous manner we may clearly prove the following: 

i II{%, Y) P- (x) an- (z) dX = %+g- (Y) S” (Y) 
v 
a 

(2.15) 

where o,+ = b,n-kn-Ik,+l-l # 0. 
It now remains to be shown that 

b nn-k,- [k,+]-’ = b,,‘k,+ [k,-I-” = a, (2.16) 

But this equation is a consequence of condition (b). To see this. one must multiply 
both sides of (2.14) by zc,- (z)p_ (z), integrate with respect to z from a to b, change 
the order of integration in the left sides of the basis of (2.2) and, finally, compare with 
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the equation obtained from (2.15) by integrating the latter with respect to x with the 
weight I$,+ (Y)P+ (y) in the interval (a, b). 

The theorem is thereby completely proved. 
We make a few remarks. The theorem is valid also when in place of (a, b) we take 

an arbitrary line (or several lines) in the complex plane. For nonnegative weight func- 
tions wrt (2) condition (d) of the theorem is fulfilled automatically ( [18], p. 39) ; and, 
finally, in the case of a Hilbert kernel, conditions (2.1) and (1.3) are equivalent. One 

may see this introducing the kernel (1.6) and the associated iterated Schmidt kernel, 
using the assertions of Hilbert-Schmidt theory [17] and the considerations given at the 
beginning of [4] . 

3, Construction of a II-kernel on a finite interval. We introduce 
into consideration a kernel 

)nin (ac, v) 

K(x, Y)= s 
K, (z - s) K- (y - a) P (s) ds (a d x. y d b) (3.1) 

a 

and concern ourselves with the question of what the functions K,, K_, p should be in 
order for it to be a II-kernel on the interval (a, b). For this we consider the integral 
transforms b b 

J += 5 K (2, Y) ‘P+ (Y) dye J- = 1 K (Y. 4 cp- (Y) dy (3.2) 
a a 

where rp* (z) are for the time being arbitrary functions. 
We divide the interval of integration in formulas (3.2) into two parts: (a, x)and(z, b), 

using (3.1) therein. As a result of interchanging the integrals, which will be justified 

later. we shall have M h -_ 

J,= p(W$P-SW s s ‘+/--s)‘P&)dy 
a s 

After obvious changes of variables we obtain 
1 

1 FP (F + a) K+ [E (I- z)l @I- a - 4~) dr {Q [r (b - a - O)I ‘P+ x 
0 0 

We now put 
X[Et+a+t(b-u--_~z)Jdt=J+ (E = 2 - a) (3.3) - 

‘o* (Y) = Y”P* (Y) (72. = 0, 1, a,...) (3.4) 
Then it will be easy to see from (3.3), that the relation (2.1) will hold, if 

EP (ET -I- a)K* [E (1 - @I (b - a - f.t)KT it (b - a - Etlp* [ET -I- a + t (b -- a - 

- ET)1 = 57, (XV* (T t) (F,=s--a) (3.5) 

It is easy to see that the latter will be fulfilled, when (3.6) 
p (s) = (s - I#’ (b - a)‘, K+ (u) = u-OL K_ (u) = u-0, pa (Y) = (b - Y)+‘* 

Here B+=l+o--B, ~_=i_ta---a (3.7) 

g, (2) = (2 - u)t+P-=, g_ (2) = (x - u)l+P-fi (3.8) 

F, (z, t) = ZP (1 - z)-a t-a (1 - @-o-l 

P_ (z, t) = ZP ( i- z)-@ 2-,= (1 - t)=+l 
(3.9) 

As a result of calculating the integrals in (3.3) with account taken of (3.4)-(3.9)) 
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we find 
b nn” = 

r(1--a)r(1--)r(P--++n)r(1+P+n) 
r(z+p-E++)r(1-c++) 

The formula for b,, - is obtained from (3.10) by interchanging the positions of the 

parameters a and B. Thus, on the basis of the above, the function 

II* (2. Y) = 
c (s--a)~(z?-~)~ ds S *(=-SY (Y-S)@ 

(Re(i+p, i+a. f--a, ,I---)>*) (3***) 

c = min (2, y) 

may prove to be a II-kernel. In order to convince oneself of that, one should verify the 
applicability of all conditions of Theorem 2.1. The condition I+,,,* # 0 (n = 0,1,2) 

and condition (c) of the theorem will be fulfilled if, besides the limitations imposed on 
the parameters in (3. ll), one requires in addition Re (@ - o, tt - o) > 0 (o # f&3). 

Hence we arrive at the following condition: 

Re(1i:p,1+~,1--,1-_,B-o,a-o)>O (o # i,2,3 ,...) (3.12) 

It is easy to verify that these conditions guarantee that (2.2) is satisfied, and at the 
same time make valid the interchange of integrations performed in obtaining (3.3) and 

(3.5). It remains to be shown that condition (2) of Theorem 2.1 holds. Together with 
this we show the existence of ~-polynomials for the kernel (3.11) considered. For this, 

it suffices,on the basis of (3,6)-(3.8). to indicate polynomiais satisfying the following 
conditions of orthonormality : 

b ’ s s-t,+ (xl h”’ (x) dx 
S 

fin- (4 %a+ (4 dx = bn, (3.23) 
a (5 _ ,)lt’+@ @ _ @-P-r = a (b - ~)r+=‘= (% - e)a-p-l 

Considering the properties of the Jacobi polynomials Pnhsp (z) (see e. g. [18, 201). it 
may be seen that the first orthonormality condition (3.13) will be satisfied by the poly- 

nomial 
fl,+ (3 = &+pB-Q-l. l+P-B 2x-a-b‘ 

n b-a ) 
n! r (1 + p 

(~?z+)2 = fb _ 
-a+n)(1 fP--of 24 

a)1+p-ar(Z+p-~+~)r(~-6+~) 

(3.14) 

However the formula for at,- (I) is obtained from (3.14) by interchanging the para- 

meters Q: and fi. Thus, the function (3.11) is actually a II-kernel under conditions(3.l2). 
To calculate the CT -numbers of this kernel one should use formula (2.16) with account 
taken of (3.10) and (3.14). Substituting into the first spectral relation (1.3) the elements 

for a II-kernel (3. ll), determined by formulas (3.6)-(3.8). we shall have 
b 

p~--~-~, W-B 
’ 

2~ - a - b ‘\ + _ 
b-a ) - 

r(’ -~)r(~-~p)r(p-d+~)r(l+p+n)~~-a-l~r+p-a 2x--a-b 
Z 

r (f - d + 0) L’ (2 + p - a+ n) (3 - a)n+l ( b-a 
(3.15) 

The second spectral relation is obtained from (3.15) by interchanging the parameters 
a and fi and replacing II* (t, yj by II* (y, 2). 

We note that the E-kernel (3.11) may be expressed through the first function ~20.21] 
of Appell F, (a,, 8, fYt r; z, y). Actually, considering individually in (3.11) the cases: 
5 < V, Y < z and taking into consideration the known [Zl] integral representation for 



512 G. Ia. Popov 

the function mentioned, we obtain (3.16) 

R*(% Y)’ 
r(l+p)r(1-u)(z-a)‘=+~ 

r (2 + p - a) (y - a)@ (b - a)-O 
FI l+p, -a, P, ~+P-u:;~;, z 

In the case I/ < x in (3.16) one should replace a by fi and 5 by Y. 
It is of interest to clarify under which restrictions on the parameters the R-kernel 

(3.11) obtained will in fact be a Hilbert kernel. From the definition it follows that for 
this it is necessary to have nonnegative weight functions wf (x) and the fulfilment of 
condition (1.5). In the case considered, by virtue of (3.6)-( 3.8). the nonnegativity will 
be guaranteed if Im (a -0, B - o, a --PI B-p)=0 (3.17) 

However, the condition (1.5) for the kernel II* (z, Y) may be written in the following 
form, if one bears in mind the associated function If* (5, y) from formula (1.6) : 

bb 

ss 
I If* @I Y) WZdY < m (X18), 

acr 
For H* (z, Y) the following representation holds: 

H* (9. Y) = s” H, (2, t) Hs (Y. t) dt 
a 

(3.19) 

‘12 
H,(G Y) = 

(b - x)Y-+1 (b - yp H 
(cc - y)_Y, I > y 

(x - ay+p-y (y - a)+ 0, x<y (r=u* PI 

which is seen by direct substitution to be valid. By virtue of the Cauchy-Buniakowski 
inequality applied to the integral in (3.14), for the validity of (3.18) it is sufficient that 

bb 

cs 
I H, (~9 Y) l=dy < 00 (r = a, 8) L 

aa 

This integral may be evaluated when the conditions(3.12) and 2Rey < 1 are fulfilled, 
if after substituting into it the expression for H, (z, Y), one performs a substitution chang- 
ing the interval of integration from (a, b) to (0, l), and uses formulas 9.111 and 7. 512 
(b) from [ZO]. 

Hence, when (3.12) and (3.1’7) are satisfied, and also 2Re (a, fi) < 1 , the function 
(3.11) or (3.16) will be a Hilbert n-kernel and therefore 

n* (2, y) zzz r (1 - a) r (1 - p) (b - Lq-p-1 (x - l.p+P(y - /g-B’% 

O” n! r (1 -Q + p + n) r (1 + p + n) q-l? l+p-= (u) Pt-=l* l’p-8 (v) 

Q. r(1 -G++)r(2 

(3 20) 

--a+p+n)r (2-i3+p++)(i---+p++w * 

Here and throughout the following we use 

U = (b - a)-’ (2s - a - b), u = (b - a)_’ (2y - a - b) 

Thanks to the presence in the construction of the R-kernel of a large number of para- 
meters, we may obtain from it a wide choice of Il -kernels, including all the previously 
found n-kernels on a finite interval. We begin with the case o= a ffi- p - 2, when 
the Appell function in (3.15) reduces ( pl], p.231) to the Gauss function F (a, fi; y; 5). 

Subsequent introduction of parameters 

p=f+p-a, Y=l+P---B, v=a+o-f (3.21) 
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and use of formula 6.574 from PO] (assuming Re (1 - Y) > 0) leads to the following 
II -kernel : 

Here 
xw;, Yw(--a)w--Yh v-(b-x) (y-a)) (3.22) 

00 

is the so-called discontinuous integral of ieber-Schafheitlin p2]. For II-kernel (3.22) 
the spectral relation and bilinear expansion are obtained from (3.15) and (3.20), if in 

place of (3.16) we take (3.22) and bear in mind that o = a + 0 - p - 2 and (3.21) 
holds. In this the limitations of the parameters will have the form 

Re11-ty,i-l-p, l+yS~+r,l+v-~-~,1-vfr-~,~-v+~- 
- y, 1 - VI > 0 

Re(1+Y--+y,1+Y-y++)<1, Im C, Y) = 0 (3.23) 

It is necessary to consider the last two restrictions only in the case of a Hilbert kernel 
(3.22). For the case a = 0, b = 1 , the spectral relation and bilinear expansion for the 
II-kernel (3.22) are formally obtained in [14]. One may also find there many particular 

cases. If in (3.16) we now set u = 0 and take (3.21). then we come to the following 
II -kernel : 

rI (x, Y) _i (x-up 
r (1 - a) r (1 - p) - 2” (y _ q-'/iY wK Y (1/c_ l/y) (Re(l -v)>O) (3.24) 

The spectral relation and bilinear expansion for this Hilbert kernel (if the conditions 
2Re (a, fi) < 1, (3.12) and (3.17) are fulfilled) follow ftom (3.15) and (3.20) for u = 0 
and (3.21). They were shown for the case a = 0, b A 1 in [14]. There, and also in [4], 
one may find numerous particular cases of II -kernels (3.24), many of which found appli- 
cation in contact problems [4]. However the bilinear expansions obtained in the papers 
cited were not justified there, because of the absence of proof of the Hilbert-like nature 

of the corresponding kernels. The condition of Hilbert-likeness obtained here, 2Re (a, 
f3) < 1 , (3.12 and (3.17), and their particular case (3.23) fill in this gap (to a certain 
extent). 

Without dwelling on the various particular cases of II-kernels (3.24) in the interest 
of saving space, we indicate only one important case, which although contained in [4], 
was not remarked upon. We arrive at this case if in (3.24) we set a = 0, b = 1, 

p = y = ‘/a, v = 0, x = F, -y = q’” , and consider formulas 6.576 (2) and 9. Ll21 (6) of 
r20]. The spectral relation and bilinear expansion corresponding to it 

(0 < 5, q < 1, T, (2) are Chebyshev polynomials) 

we obtain from (3.15) and (3.20). fixing the parameters as indicated. This bilinear ex- 
pansion was used in the solution of a problem in hydrodynamics in [19]. 
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In order’to obtain the II-kernels constructed in [15]. we must set o = 0, fi 1 2 $ p - 
- a, f + p = Y in (3.16) or (3.11). As a result we find the &kernel 

r (Y) r (a - v) (y - a)--1 
R (zl Y) = r(a) 1% - y 1” (x - q-” i 

sin n: (a - v) cosec nu, z <Y 

i, Y<X 

which may also be written in the form 

Here 

R (2, Y) = 
~(v)~(~-v)[a~~ign(z~y)+a~]~(y-~)~-~ 

r (~2) la% + a,)~ tz - ga-v 1 z - y 1~ (3.25) 

A = v/i - 2a.,,p cos XV + a*21* 

The parameters al, u2, p in this expression, and also the branch of the arcsine func- 
tion should be chosen so that the condition 0 < Re a < 1 is guaranteed. Namely this 
R-kernel for e = 0, b = 1 was in fact constructed in [15], where one may also find 
other II -kernels, obtained from (3.25) by passing to particular values of the parameters. 

The spectral relation and bilinear expansion indicated in the cited work follow, of course, 
from (3.15) and 3.20). An application of the II -kernel (3.25) to a contact problem 
was given in [9]. 

Setting o = 0, p = a + 6 - 2(p = v - 1, p = if v -a, v = a + p - 1) in (3.15) 
then, taking (3.16) into consideration, we shall have 

b [u+ + a- sign (z - Y)] Pzas a-1 tv) 
a ~z_YIV(y__)ll~(b_y)a-V ‘Y= nlsmfiaainn(a-v) s 

fi (Y)$;-r* y-a (u) 

(a* =[2sinnasinn (a - v)]-l [sinna & sinn (a - v)l) 

If we use the orthogonality of the Jacobi polynomials, the relation obtained may be 

written in the form 
b 

S 1 1 1 Q’P~~ E-1 (v) 

a ,x--y,’ --’ T(y-a)l-a(b-y)a-Y 

fir (V + 72) P;+ y--a (u) a+r (CX) r (1 + v - ~1) 
= r (1 + v) sin 3ta sin n (a - v) n! -‘, b ( - a)-‘vr (v + 1) 

(&I is the Kronecker symbol) 

Passing now to the limit Y -, 0 separately in the cases n = 0 and n # 0 (an analog- 
ous operation but for another purpose was performed in [4] ) we arrive at a spectral rela- 
tion of the II -kernel of the form 

(3.26) 

In the case a = -i, b = 1 , this was obtained and applied to a contact problem in 
[7]. In an analogous way, from (3.20) one may obtain also the bilinear expansion for the 

II -kernel (3.26). 

4. The conrtruction of II-kernel, far a #em&-infinite interval, 
In order to construct II -kernels on a semi-infinite interval by this approach, one must 
take a representation for (the kernel analogous to (3.1). Another family of -II-kernels 
may be obtained by taking as basis the following representation : 
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K, (s - 4 K- (s - y) p (s) ds (4.1) 

However the same results may be obtained more quickly by the following formal 
cedure. In the spectral relation (3.15) we set a = 0, o = --b, after which we let b 
to 00. As a result of using the limiting equations 

lim P, ( a,b+@ 1 
b--w 

- 2x / b) = L,(=)(z) 

pro- 
tend 

we shall have 

;E(b _xf=: e-x, r (2 + 4 = i 
,$: r (2) za (4.2) 

O” Q (23 Y) 

S et/ 
@+,1+p-@ ( y) dy = 

r(2+p-u++)2?@-1 
(4.3) 

0 

Here &(a) (z) is a Cheby shev-Laguerre polynomial and the ,II-kernel has the form 
X 

S 

es? ds 
n,@,Y)= ; ’ 

o P-s) (Y--ST 
W(i+p, i-a, I--p)>O, x=min(z,y)) (4.4) 

The constructed l-l-kernel may be expressed in terms of a degenerate hypergeometric 
function @7 (a, 6. y; 5, Y) of two variables [Zl]. For this, in the case z < Y , it suffices 
to perform the substitution s = st in (4.4), expand the exponent in a series, and finally 
expand the remaining integral in a series in I / Y. As a result we have 

n, (x9 Y) = ‘(;;zft;P) @l(i+P, P, a+p+2,sJ, S/Y) (Z<Y) 

For x > y one should replace a by ji and x by y on the right. 

One could also arrive at these results by starting directly from the integral representa- 
tion (3.1) for a = 0. On the other hand we arrive at the results obtainable on the basis 
of representation (4.1) if in this same spectral relation (3.15) and formula (3.11) with 
a = 0, P = b , we make the change of variables s = b - t, x = b - 4, Y = b -q, 

after which we let b -+ 00. As a result of the use of (4.2) we shall have 

O” n-v rl) S 9 
1+;;b L$,@-) (q) dq = r (1 - a) r (1 - P) r (P - a + n) L(a+l) 

r (1 -a + n) e4 n (4) (4.5) 
0 

And in this, CO 

l-Iw (4, ‘1) = S 
em’ so ds 

max (E, *) (s - 4)” (p - rlY ’ 
~e(i-u, I--, U-G, P--a)>0 (4.6) 

Not dwelling on the many particular cases of II-kernels (4.4) and (4.6). we merely 
note that the latter for o = 0 is expressible in terms of a degenerate hypergeometric 
function @l] of second kind. Actually, considering, for example, the case e > 9, after 

obvious changes of variable and use of formula 9.211 (4) from [20], one may see that 

IIoo (I, y) = emX (5 - y)r-zyq r (1 - ~4) Y (I -a, 2 - tl - p; z - Y) (2 > Y) 

for Y > 5 on the right side of this latter formula one should replace Y by z and a by 
6. If a = 0, the both cases (z > Y and z < Y) are governed by the same formula, 
which permits the spectral relation (4.5) to be written in the form 
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@=1-a, O<Rep<l) 

If we here set p - v + 112, make the changes E = 22, rl = 2~ and use the known 
( @l], p.253) formula for the MacDonald function K, (z), then we obtain a spectral rela- 
tion for the II-kernel of the form 

Kv (1 .z - Y 1) 1 5 - Yl-” (4.8) . , 
which was first found and applied to certain problems in [4, 61. 

It should be noted that the bilinear expansion for the II-kernel (4.8) given in [4] is 
only formal, since its Hilbert-like nature was not proved. Moreover it may be shown 
that the H-kernel (4.8) for v - 0 will not be Hilbert-like and the bilinear expansion 
indicated in [4] converges in a weaker sense than the & convergence. 
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CONCENTRATED FORCE IN A TRANSVERSALLY-ISOTROPIC 

HALF-SPACE AND IN A COMPOSITE SPACE 

PMM Vol. 33, Np3, 1969, pp. 532-537 
V. A: SVEKLO 
(Kalmingrad) 

(Received October 22, 1968) 

The problem of the effect of a concentrated force in an isotropic (orthotropic) space has 
been examined in [l-3]. 

The problem is investigated below by the method of complex Smirnov-Sobolev solu- 
tions, generalized to a system of differential equations. 

The results obtained are of elementary nature just for a transversally isotropic solid. 

1. Complex aolutionr of the equilibrium equationr. If the poten- 
tials cp, I$, x are introduced by assuming 

then the equilibrium equations of a transversally isotropic body under the condition that 
the z-axis is along the axis of elastic symmetry become 

aL1 aQ ml aQ 3L.2 -- =+ay=o, ay-x=0, a&” -0 (1.2) 

L1=AAcp+Ld2~/dz2+(L+F)d2~/dz2 

L, = (L + F)Acp + LAX + Cd2xIdza (1.3) 

Q = NA$ + L&q / dz2, A = ata/dS Jr d2/dya 

Here A, L, F, N, C are elastic constants 143. Let us construct the solution of the system 

(1.2) in the form cp = Re ,I,0 (6) t $ = RW W, x = Rex” (6) (1.4) 

The variable 6 is defined by the relationship 


